With an increasing amount of data in the art world, discovering artists and artworks suitable to collectors' tastes becomes a challenge. It is no longer enough to use visual information, as contextual information about the artist has become just as important in contemporary art. In this work, we present a generic Natural Language Processing framework (called ArtLM) to discover the connections among contemporary artists based on their biographies. In this approach, we first continue to pre-train the existing general English language models with a large amount of unlabelled art-related data. We then fine-tune this new pre-trained model with our biography pair dataset manually annotated by a team of professionals in the art industry. With extensive experiments, we demonstrate that our ArtLM achieves 85.6% accuracy and 84.0% F1 score and outperforms other baseline models. We also provide a visualisation and a qualitative analysis of the artist network built from ArtLM's outputs.
translated by 谷歌翻译
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
translated by 谷歌翻译
We identify the task of measuring data to quantitatively characterize the composition of machine learning data and datasets. Similar to an object's height, width, and volume, data measurements quantify different attributes of data along common dimensions that support comparison. Several lines of research have proposed what we refer to as measurements, with differing terminology; we bring some of this work together, particularly in fields of computer vision and language, and build from it to motivate measuring data as a critical component of responsible AI development. Measuring data aids in systematically building and analyzing machine learning (ML) data towards specific goals and gaining better control of what modern ML systems will learn. We conclude with a discussion of the many avenues of future work, the limitations of data measurements, and how to leverage these measurement approaches in research and practice.
translated by 谷歌翻译
Multi-agent artificial intelligence research promises a path to develop intelligent technologies that are more human-like and more human-compatible than those produced by "solipsistic" approaches, which do not consider interactions between agents. Melting Pot is a research tool developed to facilitate work on multi-agent artificial intelligence, and provides an evaluation protocol that measures generalization to novel social partners in a set of canonical test scenarios. Each scenario pairs a physical environment (a "substrate") with a reference set of co-players (a "background population"), to create a social situation with substantial interdependence between the individuals involved. For instance, some scenarios were inspired by institutional-economics-based accounts of natural resource management and public-good-provision dilemmas. Others were inspired by considerations from evolutionary biology, game theory, and artificial life. Melting Pot aims to cover a maximally diverse set of interdependencies and incentives. It includes the commonly-studied extreme cases of perfectly-competitive (zero-sum) motivations and perfectly-cooperative (shared-reward) motivations, but does not stop with them. As in real-life, a clear majority of scenarios in Melting Pot have mixed incentives. They are neither purely competitive nor purely cooperative and thus demand successful agents be able to navigate the resulting ambiguity. Here we describe Melting Pot 2.0, which revises and expands on Melting Pot. We also introduce support for scenarios with asymmetric roles, and explain how to integrate them into the evaluation protocol. This report also contains: (1) details of all substrates and scenarios; (2) a complete description of all baseline algorithms and results. Our intention is for it to serve as a reference for researchers using Melting Pot 2.0.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Progress in machine learning (ML) comes with a cost to the environment, given that training ML models requires significant computational resources, energy and materials. In the present article, we aim to quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle. We estimate that BLOOM's final training emitted approximately 24.7 tonnes of~\carboneq~if we consider only the dynamic power consumption, and 50.5 tonnes if we account for all processes ranging from equipment manufacturing to energy-based operational consumption. We also study the energy requirements and carbon emissions of its deployment for inference via an API endpoint receiving user queries in real-time. We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of ML models and future research directions that can contribute towards improving carbon emissions reporting.
translated by 谷歌翻译
从过去的经验中发现有用的行为并将其转移到新任务的能力被认为是自然体现智力的核心组成部分。受神经科学的启发,发现在瓶颈状态下切换的行为一直被人们追求,以引起整个任务的最小描述长度的计划。先前的方法仅支持在线,政策,瓶颈状态发现,限制样本效率或离散的状态行动域,从而限制适用性。为了解决这个问题,我们介绍了基于模型的离线选项(MO2),这是一个脱机后视框架,支持在连续的状态行动空间上发现样品效率高效瓶颈选项。一旦脱机而在源域上学习了瓶颈选项,它们就会在线转移,以改善转移域的探索和价值估计。我们的实验表明,在复杂的长途连续控制任务上,具有稀疏,延迟的奖励,MO2的属性至关重要,并且导致性能超过最近的选项学习方法。其他消融进一步证明了对期权可预测性和信用分配的影响。
translated by 谷歌翻译
ImagEnet-1K是一个通常用于基准测试机器学习(ML)模型的数据集,并评估了诸如图像识别和对象检测等任务。野生动物占Imagenet-1k的27%,但与代表人和物体的类别不同,这些数据尚未受到严格审查。在当前的论文中,我们分析了269个类的13,450张图像,这些图像代表了Imagenet-1K验证集中的野生动物,并参与了专家生态学家。我们发现许多类是不明显或重叠的,并且图像的12%被错误地标记,某些类的图像> 90%的图像不正确。我们还发现,Imagenet-1k中包含的与野生动植物相关的标签和图像都呈现出明显的地理和文化偏见,以及诸如人造动物等歧义,相同图像中的多种物种或人类的存在。我们的发现突出了该数据集的广泛使用来评估ML系统的严重问题,在与野生动植物相关的任务中使用此类算法以及更广泛地创建和策划ML数据集的方式。
translated by 谷歌翻译
清洁和不同标记的数据的可用性是培训复杂任务(例如视觉问答(VQA))的培训模型的主要障碍。大型视觉和语言模型的广泛工作表明,自我监督的学习对预处理多模式相互作用有效。在此技术报告中,我们专注于视觉表示。我们审查和评估自我监督的方法,以利用未标记的图像并预处理模型,然后我们对其进行了自定义VQA任务,该任务允许进行控制的评估和诊断。我们将基于能量的模型(EBM)与对比度学习(CL)进行比较。尽管EBM越来越受欢迎,但他们缺乏对下游任务的评估。我们发现,EBM和CL都可以从未标记的图像中学习表示形式,这些图像能够在很少的注释数据上训练VQA模型。在类似于CLEVR的简单设置中,我们发现CL表示还可以改善系统的概括,甚至匹配来自较大,监督,预测模型的表示的性能。但是,我们发现EBM由于不稳定性和结果差异很高而难以训练。尽管EBMS被证明对OOD检测有用,但基于监督的基于能量的训练和不确定性校准的其他结果在很大程度上是负面的。总体而言,CL当前似乎比EBM的选项更为可取。
translated by 谷歌翻译
在实践中,在实践中应用机器学习算法的瓶颈缺乏大规模标记的数据。转移学习是利用其他数据来改善下游性能的流行策略,但是找到最相关的数据可能是具有挑战性的。神经数据服务器(NDS)是一种为给定的下游任务提供相关数据的搜索引擎,以前已被提议解决此问题。 NDS使用经过数据源培训的专家组合,以估计每个源和下游任务之间的相似性。因此,每个用户的计算成本都随着来源的数量而增长。为了解决这些问题,我们提出了可扩展的神经数据服务器(SND),这是一种大规模搜索引擎,理论上可以索引数千个数据集以将相关的ML数据提供给最终用户。 SND在初始化过程中训练专家在中介数据集上的混合物,并通过与中介数据集的近距离表示数据源和下游任务。因此,随着新数据集添加到服务器中,SNDS用户产生的计算成本仍然固定。我们验证SND在许多现实世界任务上,发现SNDS推荐的数据改善了基线的下游任务性能。我们还通过显示其选择相关数据以在自然图像设置之外传输的能力来证明SND的可伸缩性。
translated by 谷歌翻译